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A cylindrical MGD configuration comprising an electrically conducting, in- 
finitely extended (cylindrical) jet which is both permeated and contained by 
stream-aligned magnetic fields is considered. Axisymmetric perturbations are 
then generated by exposure to a stationary, weak, azimuthal current source. 
Ignoring relativistic and dissipative effects, asymptotic solutions complying 
with a radiation condition are established for the steady state. Generally speaking, 
the disturbed system propagates a discrete superposition of wave functions, 
each of which is uniquely obtained for either the upstream or downstream region. 
In  the non-trivial cases, there is no axial wave attenuation. However, trans- 
verse attenuations are experienced within the fluid-free enveloping field. The 
various jet-flow regimes are thoroughly examined. It is found, in particular, that 
a single stationary wave is produced upstream whenever M < 1, M 2 +  A2 2 
and AP < 1, while if M > I and A > I an infinity of discrete stationary waves 
occurs downstream, M and A being, respectively, the Mach and Alfvh numbers 
of the jet; A p  is a parameter involving M ,  A and A,, (an interface Alfvbn number). 

1. Introduction 
Stix (1957, 1958, 1962) has demonstrated the formation of small amplitude 

Alfvkn and ion cyclotron waves during steady harmonic excitations, induced by 
various current-sheet devices, of a circular cylinder of cold, pressureless, perfectly 
conducting plasma with zero electron mass contained axially by an external 
vacuum field. Bounded plasma configurations of this type, and more general 
configurations, are covered by the celebrated Kruskal-Schwarzschild problem 
(Kruskal & Schwarzschild 1954), which was primarily intended to deal with 
certain instability aspects. Rigorous stability analysis of a bounded plasma 
system with cylindrical geometry, in particular, a constricted discharge of an 
ionized gas, has been accomplished by Tayler (1957). 

The associated stable jet problem of a streaming, magnetically sandwiched, 
infinite rectangular layer of plasma, which is free from an internally trapped 
magnetic field, was later attempted, on the linearized basis, by Savage (1967). 
He showed that if the plasma is non-dissipative, has a flow velocity parallel to 
the external enveloping field and is exposed to radiation from a time-independent 
magnetic dipole then, along the plane plasma-magnetic field interface in the 
steady state, either (i) a single stationary wave may be formed upstream, if 
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the flow is subsonic, or (ii) an infinity of stationary waves are superposed down- 
stream, if the flow is supersonic. 

In the problems investigated by Kruskal & Schwarzschild, Tayler and Savage, 
the plasma model is represented by an electrically conducting fluid continuum 
conforming to purely hydromagnetic equations. 

1.1. ConJiguration of motion 

To follow up this line of study, let us consider a stable configuration in equi- 
librium comprising an infinite-length cylindrical jet of non-gravitating, perfectly 
conducting, inviscid, compressible fluid permeated internally by a magnetic 
field and confined externally by another magnetic field occupying an infinite 
vacuous space. Both magnetic fields are aligned with the axial jet stream, the 
interior field being permanently frozen and trapped within the jet column, which, 
likewise, freezes the exterior field upon its otherwise free-surface. Small axisym- 
metric excitations are initiated by a stationary, weak, azimuthal current arbi- 
trarily distributed over some finite-length tubular conductor co-axially positioned 
in the vacuum field. As in normal practice, a non-relativistic version is proposed. 

1.2. An outline 

Equations are originally formulated for unsteady motion to allow the applica- 
tion (in accordance with Lighthill (1960)) of a radiation condition that will 
ensure the uniqueness of any particular solution in the ultimate steady state, 
attributed to a steady source current. A general asymptotic solution, incorpora- 
ting a radiation condition and valid at  large axial distances from the source, is 
established for various ranges of the flow parameters in which the dispersion 
relation possesses neither a vanishing root nor a repeated real root. This solution is 
either negligible (in certain trivial cases) or is, essentially, a discrete superposition 
of stationary wave functions over the set of real, non-vanishing, distinct roots of 
the dispersion relation. It then transpires that, as a consequence of the imposed 
radiation condition, each distinct wave function exists only on one side (viz. 
upstream or downstream) of the generating source, justifiably, the side into 
which the sustaining energy is transported. There is no wave attenuation in the 
axial direction, but, within the vacuum field, radial attenuation occurs with a 
transverse withdraw1 from the axis of symmetry. 

The type of steady-state results obtained depends on one of the following 
criteria : 

M2+A2 < 1, (E 1 )  

M > l ,  A < l ,  (E 2) 

M >  I,  A >  1,  

M < 1,  A < 1, M z + A z  > 1, 

where M and A are, respectively, the Mach and Alfvdn numbers of the jet stream, 
and h/3 is a known parametric function of M and A as well as A ,  (the ratio of 
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the flow speed of the jet to the AlfvBn speed involving the external confining 
field, i.e. an Alfvdn number for the fluid-vacuum interface). The flow regimes 
(E 1)-(E 3) (or (H I) and (H 2))  correspond to, adopting the terminologies of 
McCune, Resler and Sears (McCune & Resler 1960; Sears & Resler 1964), an 
elliptic (or hyperbolic) motion of the jet column. Under any one of the conditions 
(E I),  (E 2) or (E 3a) perturbations are asymptotically negligible. If (E 3 b )  holds, 
then our general superposed solution reduces to  a single term, precisely, a single 
stationary wave. Moreover, €or the subregime M < 1, M 2 + A 2  2 2 of (E 3), we 
can prove that this particular wave must appear upstream. For both hyperbolic 
flow regimes (H 1) and (H 2 ) ,  the superposition is one consisting of an infinite 
number of stationary waves, all of which are, in the case of (H I), to be found 
downstream. [Note that if the jet is free from an internally trapped field then 
A = co, in which case, of the five jet regimes, only (E 3) and (H I), together with 
their associated results, are relevant and correspond to M < 1 and M > I, 
respectively. Thus physical conclusions agree with those of Savage for his 
rectangular (i.e. Cartesian) analogue of the cylindrical field-free jet.] 

2. Equations of motion 
With reference to a cylindrical (x, r ,  8)  co-ordinate frame, the x axis is chosen 

along the axis of symmetry of the infinite-length equilibria1 jet column r < yo 

(see 8 1.1) .  Present in the surrounding vacuum r > yo is an azimuthal current 
source of density 

being carried along a co-axial tubular conductor of finite length 21: 

(2.1) 

J = 0 for 1x1 > I, (2.2) 

J = 0 in r, < r < rl(x) and r2(x)  < r < co. (2.3) 

J(x, r ,  t )  = ( O , O ,  J ( x ,  r ,  t ) ) ,  

and bounded by the profiles r = r l ( x )  ( > r,) and r = r2(x) ( i rl(x)): 

The current distribution J ( x ,  r ,  t )  is clearly axisymmetric and is assumed to be 
small in magnitude. Excitations created by it are likewise axisymmetric and 
correspondingly ‘weak ’. In this paper, we restrict ourselves to a non-relativistic 
treatment, wherein the speed of light infinitely exceeds all other characteristic 
speeds of propagation, namely, the speeds of sound and Alfv6n waves. Equations 
formulated are in electromagnetic units and linearized (wherever nonlinear). 

In  the external vacuum, whose magnetic permeability is unity, the perturba- 
tion H (induced by the current source) from the uniform confining axial magnetic 
field H, = (H,, 0,O) satisfies 

(2.4) 

divH = 0. (2 .5 )  

[Note that the displacement current term normally associated, in electromagnetic 
theory, with (2.4) is virtually non-existent under a non-relativistic hypothesis.] 
From (2.1) and (2.4), it follows that H possesses only axial and radial components: 

curl H = 47rJ(x, r ,  t ) ,  
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Suppose that a magnetic line of force in the total external field H + H, is radially 
displaced by the amount c. Then 

Also, a boundedness condition is required, viz. 
H, agax = H,. (2.7) 

161 <co as r - f c o .  (2.8) 

We next turn our attention to  the disturbance field transmitted to the jet 
column of inviscid compressible fluid having magnetic permeability p, say, 
and infinite electrical conductivity. Let us first describe the initial uniform state 
of the fluid by its density p and pressure 11, the speed c of sound (in the fluid), 
the jet flow velocity ( U ,  0,O) and the magnetic field ( H ,  0,O) trapped within it. 
Variations in the flow and magnetic fields are defined by u and h, whose (x, r )  
components are, respectively, (u, v )  and (h, 9). Finally, we let p denote the fluid 
pressure perturbation from 11. Whereupon, the motion within (approximately) 
r Q r,, is governed by the following equations: 

aP 2+ at U-+cC2pdivu ax = 0, 

,UH ah + g r a d ( p + g h )  = 0, 
(2.10) 

div h = 0, (2.11) 

ah ah au - + U -  - H -  + ( H ,  0,O) divu = 0, 
at ax ax 

and t,he symmetry condition 

v = g = 0  at r = 0 .  

(2.12) 

(2.13) 

Also, if q is the radial elevation of a magnetic line of the total internal magnetic 
field, then 

H aqlax = g .  (2.14) 

Hence the r component of (2.12) gives 

(2.15) 

We now stipulate conditions at  the interface (originally coinciding with r = r,) .  
First, we note that (2.15) implies that qlr=,,, is, in fact, a deformation of the inter- 
face, i.e. the jet profile. Across this profile, the normal component of magnetic 
field must be continuous, thus requiring that 

( = q  at r = r o .  (2.16) 

A second condition is that the internal magnetic pressure plus fluid pressure 
must balance the external magnetic pressure at the interface. This condition 

at r = r,,, (2.17) 
is reducible to 

PH Ho p+-h=- -H 471 471 

because in the undisturbed equilibrium 

11 + p H 2 / 8 ~  = Hg/8n. (2.18) 
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3. A Fourier analysis 
In  this paper, we are mainly interested in deriving a (possible) steady-state 

wave solution which is unique. With this aim in mind, we let the strength of 
the current source (2.1) accumulate exponentially with time: 

- (4n/H0) J ( x ,  r ,  t )  = eatX(x, r )  ( e  > 0). (3.1) 

Introducing Fourier transforms, each indicated by an asterisk, we define 

whose inverse is 

For a wave solution in the steady state to be unique (i.e. unaccompanied by 
arbitrary complementary functions), it must satisfy a radiation condition. This 
condition can be incorporated in the manner proposed by Lighthill (1960), 
namely, by initially allowing each perturbation function to develop exponen- 
tially with time in step with the 'growing ' source: 

[*(a, r ;  e )  eiaxda. (3.4) 

Since any free perturbation (which corresponds to a complementary function) 
encountered originates independently of the source, and so maintains a time- 
independent amplitude, its effect at large t (i.e. near the steady state) is negligible 
compared with that of the forced perturbation determined to a magnitude of 
order eat. Thus, a steady-state solution for 5, say, corresponding to the forcing 
current specified by (2.1)-(2.3) with 

- (477/H0) J = x (x ,  4,  

can be uniquely constructed by evaluating its integral representation (3.4) for 
small positive e and then letting a tend to zero. 

3. I .  The region r > ro 

Fourier transformation (using (3.1)-(3.4)) of (2.4)-(2.7) results in 

aH;/ar - iaHF = H0x*(a, r ) ,  

these three equations being reducible t o  
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an inhomogeneous Bessel equation for the quantity E * ,  which, in view of (2.8), 
also satisfies the condition 

l f * l  < co as r - t m .  (3.9) 

After solving (3.8) by the method of variation of parameters, incorporating (3.9) 
and using the appropriate recurrence and Wronskian relations of the modified 
Bessel functions &(z) and K,(z) (Watson 1944, 3.71), we arrive at  

(3.10) 

C = C(a, e)  being (for the moment) arbitrary and the positive constant R 2 r2(x)  
so that x = 0 in r > R (cf. (2.3)). 

3.2. The region r < ro 

Likewise, on applying the Fourier integral (3.4) to (2.9)-(2.15) and retaining 
relevant components of vector equations, we have 

ag* g* 
-+-++ah* = 0, ar r 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(iaU+e)h*-iaHu*+H (3.15) 

v* = 9" = 0 at r = 0, 

iuHy* = g*, 

(iaU + E )  y* = v". 

Suppose that the flow parameter /3 is defined by 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

where a = (pH2/4np)* is the (internal) Alfvdn speed of the fluid column, and 
M = U/c and A = U/a  are, respectively, its Mach number and Alfvdn number. 
For the compressible jet, we assume that M $: I, A $: 1 , 1 M 2 +  A2 $: 1 and U > 0. 
Furthermore, let us define 

/I, = /3( U - isa-I). (3.20) 

We can now reduce (3.11), (3.12) and (3.15) to 
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and also manipulate (3.12)-(3.14) to obtain 

(@+--%-a2) a 2  i a (p*+-h*)  PH = - p ( i a U + s )  
4n 

By adding, we obtain Bessel's equation 

Appropriate boundary conditions are, by (3.13) and (3.16), 

__ a ( p* +- :f h* ) = o  at r = ~ ,  
ar 

and, in view of (2.17), (3.6) and (3.7), 

The solution to (3.21)-(3.23) within r 6 ro is then 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

Let a, = (B02/4np)4, the (interface) Alfv6n speed arising from the contact be- 
tween the fluid column and its confining magnetic field. Substitution of (3.17), 
(3.18) and (3.24) into (3.13) then yields 

which together with the Fourier transform of (2.16), i.e. 

7" = <* at r = ro, (3.26) 

implies 

Either of the expressions (3.25) or (3.27) for T~~ is valid in r 6 ro. 

3.3. The unique solutions for '* and 7" 
Let us introduce another parameter of motion, namely, 

a2A2- 1 
h = h ( U )  = T-, 

a, P2 
and define a, = A( u - i ~ l ) .  

From (3.25) and (3.26), we then have 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

the boundary condition which, when applied to (3.10), would complete the 
evaluation of a unique <*. Thus, in (3.10), C is determined, on employing the 
Bessel recurrence relations, by 

(3.31) 



(3.34) 
Its application to (3.27), incorporating the Wronskian relation, leads to 

3.4. Steady-stute integrals 

The Fourier inversion (usinglimiting form of (3.4), as E-+ 0,) of (3.35), taking into 
account (3.2), (2.2) and (2.3), yields for the steady-state motion 

then a similar inversion of (3.34) shows that, in the steady state, we may write 

((2, r )  = <1(x, r )  + t z (x ,  r ) .  (3.39) 

The term g2(x, r )  occurring in (3.39) can be expressed in the form 

which is reducible by a cosine integral formula (see Erd6lyi et al. 1954, 1.12) to 

Here, Q&z) is a Legendre function of the second kind and is related to a hyper- 
geometric function by 

&&) = n 2 - b - Q q 3 ,  p; 2; 1/x2), 

N n2-tz-P as IzI +a. 

Thus, in particular, g2(x,r) = Ofx-3) for 1x1 1. (3.41) 
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Now, the expression (3.40) does not, in any way, involve the radius ro of the 
fluid column. Hence the value of t 2 ( x ,  r )  is independent of conditions at the inter- 
face r = ro and must, therefore, represent the radiation received directly from 
the current source without having undergone any reflexion at  the interface, 
that is, an incident wave. 

It follows that the component &(x, r )  is a measure of the radiation reflected 
from the interface. The resultant effect (of incidence plus reflexion) associated 
with [ (x , r )  is transmitted across the interface and propagated into the jet 
column by the perturbation ~ ( x ,  r ) .  

In the case of a uniform source current confined to a circular filament positioned 
at x = z ,  r = K ,  so that 

(3.42) ~ ( x ,  r )  = r-I6(r - K )  6(x  - x ) ,  

6(x)  being the Dirac delta function, (3.41) becomes 

51(x, r )  = @(x, r ;  % K ) .  

Obviously, @(x, r ;  z,  K) is a Green’s function of the problem. 

4. An asymptotic approximation 
We shall now seek an asymptotic approximation to the Green’s function 

@(x, r ;  z ,  K )  at large axial distances from the current loop (3.42) at x = x .  The 
starting point is (3.38)) which can be written in the form 

where 

with G, denoting aG/i?U and (cf. (3.32) and (3.33)) 

w, U )  = Io(r0lal) WroIaI) + W1(rolal) Io(Prolal)) 

G(a, 0) = ~ o ~ ~ o l ~ l ~ ~ l ~ ~ ~ o l ~ l ~ - ~ ~ ~ l ~ ~ o l ~ l ~ ~ o ~ ~ ~ o l ~ l ~ ~  (4.4) 

(4.3) 

The result achieved will then be used to generate a corresponding asymptotic 
estimation of [(x, T ) .  

We use contour integration to approximate to (4.1) in two parts, viz. 

and So . 
--m 

The integral from nought to infinity is evaluated with the variable (a( re- 
placed by a, and the real path (0,co) suitably deformed into the complex-a 
plane. Likewise, the integral from minus infinity to zero is evaluated with 
la1 replaced by -a, and the real path (-a, 0) similarly deformed. In  both 
cases, the contour deformation must take into account the logarithmic branch 
point of the functions KO and K, at a = 0. Otherwise, for complex a =k 0, 
the integrand factor $(a, B )  is meromorphic, its only singularities being poles. 
These derive from the zeros of G(a, U ) ,  for example, when sufficiently near a real 



138 L. Chee-Seng 

simple zero a = a, of G(a,  U ) ,  the denominator in (4.2) may be approximated as 
e -+ 0, by (cf. Lighthill 1960) 

%G&,, U )  [a- (a,+~s/~(a: ,))I ,  (4.5) 

( 4 4  

a = a,+ie/V(a,), (4.7) 

in which Ga denotes aG/aa and 

V ( 4  = aGa(a:, U)/Q,(a, 0); 
the implication of (4.5) is that $(a. e) has, as e -+ O,, a simple pole at  

situated at  a small vertical distance from the position a: = a, on the Re (a)  axis. 
From here on, we shall work under the hypothesis that the initial undisturbed 
configuration of motion is such that all (possible) real zeros of G(a,  U )  are simple 
(i.e. distinct) and non-vanishing. The corresponding poles of $(a, e) are therefore 
simple and distributed in accordance with (4.7), well outside a neighbourhood of 
the branch point a t  a = 0. [Note that an initial undisturbed configuration, which 
is responsible for G(a,  U )  acquiring a real (repeated) zero of order m ( 2 2 ) ,  say, 
must be avoided as this will impart to each perturbation solution a term which 
is of 0(xm-l) as 1x1 --f co and hence, clearly, incompatible with linearized equations. 
Moreover, in such a system, it can be shown that the originally unsteady per- 
turbed motion can never develop a steady state.] 

Since the poles of a meromorphic function are isolated, there is a narrow strip 
IIm (a)]  < k, say, about the Re (a)  axis within which $(a, e) is analytic except 
for its branch point at a: = 0 and (possible) poles which are slightly displaced, 
as indicated by (4.7), from the real positions a = a,. The real integral path (0, co) 
for CD may therefore be deformed, as illustrated in figure 1, into the straight 
segment proceeding from 0 to ik and thence to ik+m whenever x > z (or into 
the straight segment proceeding from 0 to - ik and thence to - ik + 00 whenever 
x < z ) .  A similar deformation for the path ( - 00, 0 )  is also carried out (see figure 1). 
The only poles crossed by each such contour deformation are the ones associated, 
via (4.7), with those real simple zeros a, which necessarily satisfy V(a,) > 0 (or 
V(a,) < 0). Whence, by the residue theory, the contribution 

rt i C lim residue $(a, e) eia(lL-z) 

Y e+O+ a,+is/V(a,) 

to CD in the region x z results (according as V(a,) 5 0). Along each of the vertical 
branch cuts about the Im (a) axis, the diverted contour integral, estimated as 
a Laplace integral (see, for example, Erddlyi 1956), is of O( Ix - z [  -I) as Ix - zI -+ co. 
This is, however, dominated by the residue sum (4.8). Also, from the divided 
horizontal segment I m a  = k (or -k), there is a contribution of a bounded 
Fourier integral. This is of O(e-klz-zl), which is evidently negligible. Whereupon, 
we finally arrive at the conclusion that, in general, 

(4.9) 
as Ix - 21 --f co. Here H ( x )  denotes the Heaviside unit step function. 
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- Im(cc) = k c-4 .c 

V(au)>O 
j, 

oA\o 0 0 0  M a )  

‘I 

\ Im(cc)=-k 
(X<Z) - 

Since (4.4) implies that, in particular, G(a, U )  = G(la1, U )  when a is real, the 
real zeros of G(a, U )  must actually appear in symmetric pairs at  a = rt laVl. 
Also, we note that, for real a =l= 0, G,(a, U )  = (sgna)G,,l(lal, U )  and, in view 

(4.10) 
of (4.6), 

where G,,, = aG/alal. Furthermore, it follows from (4.3), (4.4) and the Wronskian 

(4.11) relation that 

We can now simplify the form (4.9), substitute it into (3.37) for sufficiently large 
1x1 and, finally, employ (3.39) and (3.41). Asimilar analysis isapplicable to (3.36). 
[Note that with regard to the inner a-integral of (3.36), there is no pole associated 
with the origin a = 0 since at this point Il( /3r la l )  vanishes.] Thus, whenever 

V(a)  = V(lal) = la1 G,al(lEl, ~)/Q,(lal, 

P(%, U )  = ~ l ( p ~ o l a , l ) / r o l a Y I  m . o l a ” l ) .  

1x1 B 1 

1 r2(d 

- 2  rdz) 
where X ” ( 4  = 2 s  sin[la,l (Z-Z)ldZS K l ( K I a , I ) X ( Z , K W K  (4.14) 

and C denotes a summation ranging over all (possible) real positive roots 

a = la,l (these being, necessarily, distinct) of 
V 

G(a, U )  = 0,  
with G(a, U )  determined by (4.4). 

(4.15) 

4. i .  A physical interpretation 

The results (4.12) and (4.13) reveal that any substantial perturbation motion, 
generated within 1x1 9 I ,  occurs as a superposed collection of stationary wave 
functions, each characterized by its wavenumber la,l. There is no dissipation in 
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the axial direction. In  the external domain r 3 ro, however, wave amplitudes are 
radially attenuated as r+co (via the asymptotic formula for li,(z)) like 
e-‘laUl (rla,\)-h. 

Ostensibly, the wave with wavenumber la,\ emerges in the downstream region 
x > 0 (or upstream region x < 0) if and only if V(lcx,J) > 0 (or < 0). This mathe- 
matical phenomenon can be accorded a physical significance as follows. First, 
we deduce from (3.4) and (3.34) that the travelling wave 

< = <*(a, r, - i w )  ei(az-wt) (4.16) 

constitutes a non-trivial complementary function (i.e. a solution to the associated 
source-free motion in which x = 0) if, since 

G(E,  U - OM-’) <* = 0, 

the phase velocity q = wa-l satisfies the dispersion relation 

(4.17) 

this being a necessary condition. Hence 

with Ga = aG/aa and Gu-* = aG/a(U-q). Hence, the group velocity aw/aa (or 
velocity of energy propagation) in the positive x direction is determined by 

(4.18) 

Now, let w = 0. Then q = 0, in which case < possesses a stationary wave repre- 
sentation. By virtue of (4.6) and (4.18), the group velocity of this stationary wave 
system is therefore 

a w p a  = ~ ( a ) ,  (4.19) 

where a is governed by the reduced dispersion relation (4.15). Thus a stationary 
wave function appears downstream (or upstream) if and only if its associated 
energy is propagated downstream (or upstream) from the radiating source. This 
observation is consistent with an interpretation of Lighthill (1960, 1965) for 
the radiation condition. 

5. Physical results 

rolavl = z, to the (positive) distinct roots x = x ,  of the equation 
In view of (4.4), the positive simple zeros a = la,\ of G(a,  U )  are related by 

Zlk) = V Z , ( P 4  ( z  ’ 01, (5.1) 

where the functions Z,(z) and Z,(z) are given by 
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and have the first derivatives 

in which 

(5.4) 

(5.5) 

Whence, from (4.4) and (4.10), the quantities GlaI(layl, U )  and V(lcc,l), required 
in the estimations for [(x, r )  and ~ ( x ,  r ) ,  can now be explicitly formulated. Thus, 

the group velocity at  wavenumber la,,\. With reference to (5.8), 

(5.9) 
u a p  M ~ A ~ M Z  + AZ - 2) 
2 au-’ (M2+A2-1)2 . 

- 

The motion can be classified into two main categories, corresponding to P2 > 0 
andB2 < 0. We note (cf. McCune & Resler 1960; Sears & Resler 1964) that /I2 > 0 
(or < 0) is, in fact, the condition that the spatial differential operator (in a/ax, a/&) 
associated with (3.21) is elliptic (or hyperbolic), in which case, the jet flow may 
be referred to as elliptic (or hyperbolic). The perturbation motion of the exterior 
confining magnetic field is elliptic in the sense that (3.8) is associated with an 
elliptic operator. 

5.1. The case of elliptic jet $ow 

When the jet flow is elliptic, P is real and positive. In  this case, (5.1) can be 
solved for non-repeated roots by determining the non-tangential intersections 
between the two (real) continuous curves Z = Z,(z )  and2 = hPZ2(/3z). Henceforth 
we assume that x > 0. 

Now, since Kl(z)  > Ko(x) > 0 and I,@) > Il(z) > 0 (see, for example, appendix, 
equation (A 8)), from (5.2) 

0 < Z,(Z) < 1, Z,(Z) > 1. (5.10) 

Also, by the asymptotic formulae for the modified Bessel functions (Watson 
1944), 

1 3  
Z,(z) = 1 - - + - + 0  - -+ 1- as z-f  +m, 

22 8 x 2  (J 
1 3  

22 8x2 (2:) 
Z 2 ( z )  = l + - + - + O  - + l +  as z- f  +m 

(5.11) 

(5.12) 



142 L. Chee-Seng 

2 

FIGURE 2. The case p2 > 0, 0 < hp < 1. 

and, furthermore, from their infinite (power) series in x ,  

Z,(z) -+ O,, Z,(z) --f +co as x + 0,. (5.13) 

Now, according to (A I )  (see appendix), 

So (5.3) and (5.4) imply 
z;(z) > 0, Z;,(Z) < 0, (5.14) 

that is, Z,(x) is monotonic increasing (with increasing x )  while Z,(x) is monotonic 
decreasing. The properties (5.10)-(5.14) suffice to enable an appropriate sketch 
to be made of each of the curves Z = Z,(z) and 2 = A,8Z2(Pz) (see figure 2). 
Evidently, these two curves intersect each other if and only if 

O < h / 3 <  1, (5.15) 

there being only one possible intersection at  z = xo, say, and this is essentially 
non-tangential. [Note that a point of intersection between any two curves is 
solely represented here, and throughout the rest of this paper, by its abscissa, 
its ordinate being omitted for reasons of economy.] Taking (3.19) and (3.28) 
into account, the left inequality of (5.15) is, effectively, 1M < 1, A > 1, i.e. the 
jet flow must be subsonic and super-Alfvknic. 

By virtue of (5.3), (5.4), (5.10) and (5.14), the square-bracketed numerator 
factor occurring in (5.8) is 

l i1(Z) > z > F!(Z) ( > 0). 

Thus, if the flow criterion M < 1, A > I is further narrowed to 

M < 1, M 2 + A 2  2 2, (5.16) 
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then, in view of (5.8) and (5.9), 
W l a o l )  < 0. (5.17) 

Here, zo = rolcto\ is the specified single point of intersection indicated in figure 2, 
and it exists provided that the accompanying inequality (hp < 1) also holds. 
In  this case, (4.12) and (4.13) reduce to 

(5.19) 

which are valid within 1x1 9 1. Here, the functions xo(x )  and GI,,(Jaol, V )  are 
obtainable from (4.14) and (5.7) respectively. Hence each perturbation asym- 
ptotically emerges as a single upstream wave with wavenumber laOl. [Note that, 
for the jet-flow regime included within M < 1, A > 1 and adjacent to (5.16), 
i.e. A > 1, M 2 + A 2  < 2, there is also a single wave function, provided, of course, 
that h/3 < 1. However, it is generally difficult to determine from (5.8) whether 
such a wave should arise upstream or downstream of the radiating source.] 

The remaining possible regimes of elliptic jet flow are 

M > 1 ,  A < 1  (5.20) 

(corresponding to a supersonic sub-Alfv6nic jet), 

and 

M2+A2< 1,  

M < l ,  A > 1  but h/3>1 .  

(5.21) 

(5.22) 

Here, both (5.20) and (5.21) violate the left-hand inequality of (5.15) while the 
right-hand inequality is obviously violated by (5.22). It follows that (5.1) has 
no (real) root. Consequently, we conclude that, within 1x1 9 I ,  

tfx, r )  0, r ix ,  4 - 0 (5.23) 

if the jet flow is governed by any one of the conditions (5.20)-(5.22). 
In  the case M < 1, A > 1 with h/3 < 1, the interaction at  the separating 

boundary r = ro apparently imparts to the entire elliptic configuration of motion 
of both the jet column and its external confining magnetic field a pseudo- 
hyperbolic element, giving rise to a (real) axially non-decaying wave. Neverthe- 
less, this is a single wave function, unlike a genuine hyperbolic (wave) solution, 
which normally constitutes an infinite continuous (integral) superposition of 
real wave functions. In  contrast, however, the initial states corresponding to 
(5.20)-(5.22) do conform to the ellipticity of motion in the sense that all per- 
turbations diminish with increasing axial (as well as, in the case of the exterior 
region r > ro, outward transverse) distances from the source. 

5.2. The cme of hyperbolicjet flow 

Suppose that the jet flow is hyperbolic. Then /3 = ilpl with 

1/31 = ( M'+A'-i  
(5.24) 
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Again, let us assume throughout that z > 0. Hence, since 

IoT,(Pz) = Jo(IPI 21, 4 ( P 4  = iJI(IPI 2 )  

(Jo(z) and J,(z) being Bessel functions of the first kind), (5.1) becomes 

ZI(Z) = AlPI ZAIPI z ) ,  
where Z,(Z)  = Jo(z)/J,(z). 
Furthermore, if we define 

(5.25) 

(5.26) 

(5.27) 

(5.28) 

Also, from (5.8), the group velocity function 

where (cf. equation (5.9)), 

(5.31) 

The (positive) distinct roots of (5.1), or equivalently of (5.251, will 
now be established by the non-tangential intersections between the curve 
Z = Z,(z) (hJPI)-l (whose essential features are already known via (5.10)-(5.14) 
or from figure a),  and the curve Z = Z,( IPI z) .  Relevant properties of the function 
Z,(z), defined by (5.26), are naturally deduced from those of Jo(z) and J,(z). 
These two latter functions are continuous and oscillatory: 

Jo(0) = 1, J&z) > 0 in (O,mo), 

u alp12 M ~ A ~ ( J P + A ~ -  2) 
2 au - (M2+A2-1)2 * 

Jo(z) < 0 in (m2v,m2,+1), J O W  ’ 0 in (m2,+1,m2,+2), 

Jl(4 > 0 in (n2w n2,+1), JIM < 0 in (n2,+1, n2v+2), 

where the sets of points 

x = m,, z = n, (v = 0, 1 ,...,a), 

are the two infinite discrete distributions of positive (distinct) zeros of Jo(z) and 
J,(z) respectively (see Watson 1944, 15.2-15.22). In  particuIar, no = 0. Also, 
the zeros at z = m, are interlaced with the zeros at  z = n,: 

n, < m, < n,+, < m,+l (v = 0, 1, .. ., 00). 

Consequently, the set 2 = Z,(z) is composed of an infinite sequence of continuous 
branch curves separated by vertical asymptotes passing through 

2 = n, (v = 1 , 2  ,..., co). 
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FIGURE 3. The case p2 < 0. The branch curves, separated by the vertical asymptotes 
z = n,/l,4I (v = 1, 2, ...), constitute the set 2 = Z,(l/3Iz) within z > 0. The intersections 
of this set with the set Z = Z,(z) (h(pI)-l, in z > 0, are schematically represented for both 
h > 0 and h < 0. 

The Z axis is also a vertical asymptote. Moreover, 

Z,(Z) > 0 in (n,,mJ, Z,(Z) < 0 in (m,,n,+,), (5.32) 

Z,(z) = 0 a t  m, (v = 0, I ,  ..., co), (5.33) 

Z,(z)-+ +00 as z+n,, (v = 0,1,  ..., co), (5.34) 

Z,(z) -+ -co as z -+ n,- (v = I,  2, ..., 00). (5.35) 

Thus, the curve Z = Z,(lpI z )  assumes the shape illustrated in figure 3 and, 
irrespective of whether h < 0, always intersects the curve Z = & Z,(z) IhPI-' non- 
tangentially and an infinite number of times at  the points z = z, (v = 0,1,  . . . , 00). 
Since p2 = - lp12, the condition h > 0 becomes, in essence, 

M <  1, A < 1 but M z + A 2  > 1, (5.36) 

in which case, the points of intersection (see figure 3) satisfy 

n, < (PI z, < m, (v = 0,1, ..., 03). (5.37) 

On the other hand, h < 0 becomes equivalent to 

M > 1 ,  A > 1 ,  
I0 

(5.38) 
F L M  5 5  
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and, under this condition, 

m, < 1/31 z ,  < nvfl (v = O,I, ...,GO). (5.39) 

The two inequalities (5.36) and (5.38) constitute the only possible hyperbolic 
jet-flow regimes. 

Let us now focus attention upon the case when (5.38) holds, i.e. when the 
jet flow is supersonic and super-Alfvknic. The wave spectrum is infinite but 
discrete, with wavenumbers la,] = zJr0 governed by (5.39) and derived from the 
lower set of intersections (see figure 3) located below the z axis. Evidently, then, 
via (5.26) and (5.27), 

andso(5.30)showsthat V(la,l) > 0 (v = 0, I ,..., 00). 
So (4.12) and (4.13) yield, for 1x1 $ I, 

(5.40) 

(5.42) 

where Re [Glal(lavl, U ) ]  is given by (5.29). In  particular, every wave function in 
the spectrum is generated downstream. We also note, in passing, that inside the 
fluid column, each wave constituent of q(x, r )  possesses an oscillatory amplitude 
which vanishes intermittently at 

r = ~ ~ ~ l P a ~ l - 1  < ro ( j  = O,i, ...), 

where the nj’s are the zeros of J,(z). 
For the complementary hyperbolic regime (5.36) there is also an infinite 

discrete wave spectrum, whose wavenumbers ICL,~ = x,,/ro comply with the in- 
equality (5.37) and are obtained from the upper set of intersections (see figure 3) 
occurring above the z. axis. However, it  is difficult to determine the sign of 

Being an infinite (though discrete) superposition of wave functions, each 
perturbation solution somewhat resembles the solution to a hyperbolic differential 
equation. Apparently, then, there is a tendency to emphasize the hyperbolic 
character of the interior fluid motion within r < ro and conceal the ellipticity of 
the exterior magnetic motion in r > ro. 

V (  I %I 1. 

5.3. The$eld-free j e t  

I n  the absence of the internal trapped field ( H ,  0, 0), we have A = 00. Whence 

p = ( I  - M2)*, h = At/P2. (5.43) 

Here, A ,  = U/a0 (an Alfvkn number of the interface). 

M > 1 ,  Suppose that (5.44) 

corresponding to a supersonic jet flow which is evidently in the hyperbolic 
regime. I n  this case, (5.38) is invariably satisfied. So (5.39) and (5.40) hold, and 
(5.41) and (5.42) are typical asymptotic solutions encountered downstream. 
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Next, let us consider the flow field 

M 2 + A t  < 1. (5.45) 

It follows that M < 1, i.e. that the jet flow is subsonic and belongs to the elliptic 
regime. Moreover, 0 < hp < 1, which is precisely the inequality (5.15). Hence 
the sole (real and non-repeated) wavenumber existing under the present circum- 
stances is [ccol. Since (5.16) is an obvious consequence, (5.17) is valid. Single 
stationary wave functions are thus observed in the far upstream domain and have 
the forms (5.18) and (5.19). 

Finally, if lMz+A$ 2 1, H < 1, (5.46) 

whereby the jet flow is again elliptic, but AP 2 1. The motion occurs under the 
restriction (5 .22 ) ,  and so is representable by the zero solutions (5 .23) .  

The criteria (5.44)-(5.46) exhaust all relevant modes of motion in the vicinity 
of the field-free jet. 

Appendix 
The analysis of $ 5  leans heavily on a certain inequality, namely, that if 

x > 0 then 

to the 
within 

K,(z) and I,(z) being the modified Bessel functions. To prove this, we first appeal 
following Nicholson's representations (via Watson 1944, 13.72), valid 

KO(% C O S ~  $) d$, K;(z) = 2 K2(2x cash $) d$, (A 2) so" 

Hence, in view of the recurrence relations 

(A 2 )  and (A 4) yield, respectively, 

Now, when z > 0, we know that K,(z) > 0 and I,(z) > 0 (n = 0,1). So, in par- 
ticular, (A 6) and (A 7) imply 

K1(z) > KO@) > 0, Io(z) > I&) > 0 (2 > 0). (A 8)  
10-2 
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Finally, by coupling (A 3) with (A 6) and (A 5) with (A 7), we obtain, 

dq5 ’ K1(% C O S ~  4) - sinh2 $ 
cosh q5 K,(z) K,(z) - .z[K:(z) - K ~ ( z ) ]  = 2 

sin2 $ 
x [ q ( z )  - 1341 -I0@) I,@) = 4 ( 2 z  cos q5) - dq5 > 0, 

cos q5 

from which, together with (A 8), the rule (A 1)  follows. 
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